Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 808
Filtrar
1.
Diabetes Metab J ; 48(2): 170-183, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468500

RESUMO

Diabetes mellitus (DM) affects about 9.3% of the population globally. Hyperhomocysteinemia (HHcy) has been implicated in the pathogenesis of DM, owing to its promotion of oxidative stress, ß-cell dysfunction, and insulin resistance. HHcy can result from low status of one-carbon metabolism (OCM) nutrients (e.g., folate, choline, betaine, vitamin B6, B12), which work together to degrade homocysteine by methylation. The etiology of HHcy may also involve genetic variation encoding key enzymes in OCM. This review aimed to provide an overview of the existing literature assessing the link between OCM nutrients status, related genetic factors, and incident DM. We also discussed possible mechanisms underlying the role of OCM in DM development and provided recommendations for future research and practice. Even though the available evidence remains inconsistent, some studies support the potential beneficial effects of intakes or blood levels of OCM nutrients on DM development. Moreover, certain variants in OCM-related genes may influence metabolic handling of methyl-donors and presumably incidental DM. Future studies are warranted to establish the causal inference between OCM and DM and examine the interaction of OCM nutrients and genetic factors with DM development, which will inform the personalized recommendations for OCM nutrients intakes on DM prevention.


Assuntos
Diabetes Mellitus , Hiper-Homocisteinemia , Humanos , Ácido Fólico , Nutrientes , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/prevenção & controle , Diabetes Mellitus/genética , Carbono , Variação Genética
2.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396625

RESUMO

The aim of this study was to investigate the effects of aerobic treadmill training regimen of four weeks duration on oxidative stress parameters, metabolic enzymes, and histomorphometric changes in the colon of hyperhomocysteinemic rats. Male Wistar albino rats were divided into four groups (n = 10, per group): C, 0.9% NaCl 0.2 mL/day subcutaneous injection (s.c.) 2x/day; H, homocysteine 0.45 µmol/g b.w./day s.c. 2x/day; CPA, saline (0.9% NaCl 0.2 mL/day s.c. 2x/day) and an aerobic treadmill training program; and HPA, homocysteine (0.45 µmol/g b.w./day s.c. 2x/day) and an aerobic treadmill training program. The HPA group had an increased level of malondialdehyde (5.568 ± 0.872 µmol/mg protein, p = 0.0128 vs. CPA (3.080 ± 0.887 µmol/mg protein)), catalase activity (3.195 ± 0.533 U/mg protein, p < 0.0001 vs. C (1.467 ± 0.501 U/mg protein), p = 0.0012 vs. H (1.955 ± 0.293 U/mg protein), and p = 0.0003 vs. CPA (1.789 ± 0.256 U/mg protein)), and total superoxide dismutase activity (9.857 ± 1.566 U/mg protein, p < 0.0001 vs. C (6.738 ± 0.339 U/mg protein), p < 0.0001 vs. H (6.015 ± 0.424 U/mg protein), and p < 0.0001 vs. CPA (5.172 ± 0.284 U/mg protein)) were detected in the rat colon. In the HPA group, higher activities of lactate dehydrogenase (2.675 ± 1.364 mU/mg protein) were detected in comparison to the CPA group (1.198 ± 0.217 mU/mg protein, p = 0.0234) and higher activities of malate dehydrogenase (9.962 (5.752-10.220) mU/mg protein) were detected in comparison to the CPA group (4.727 (4.562-5.299) mU/mg protein, p = 0.0385). Subchronic treadmill training in the rats with hyperhomocysteinemia triggers the colon tissue antioxidant response (by increasing the activities of superoxide dismutase and catalase) and elicits an increase in metabolic enzyme activities (lactate dehydrogenase and malate dehydrogenase). This study offers a comprehensive assessment of the effects of aerobic exercise on colonic tissues in a rat model of hyperhomocysteinemia, evaluating a range of biological indicators including antioxidant enzyme activity, metabolic enzyme activity, and morphometric parameters, which suggested that exercise may confer protective effects at both the physiological and morphological levels.


Assuntos
Antioxidantes , Hiper-Homocisteinemia , Ratos , Masculino , Animais , Catalase/metabolismo , Antioxidantes/farmacologia , Ratos Wistar , Malato Desidrogenase/metabolismo , Hiper-Homocisteinemia/induzido quimicamente , Hiper-Homocisteinemia/metabolismo , Solução Salina , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Homocisteína/metabolismo , Colo/metabolismo
3.
EMBO Rep ; 25(1): 128-143, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177907

RESUMO

Collateral circulation is essential for blood resupply to the ischemic heart, which is dictated by the contractile phenotypic restoration of vascular smooth muscle cells (VSMC). Here we investigate whether S-nitrosylation of AMP-activated protein kinase (AMPK), a key regulator of the VSMC phenotype, impairs collateral circulation. In rats with collateral growth and development, nitroglycerin decreases coronary collateral blood flow (CCBF), inhibits vascular contractile phenotypic restoration, and increases myocardial infarct size, accompanied by reduced AMPK activity in the collateral zone. Nitric oxide (NO) S-nitrosylates human recombinant AMPKγ1 at cysteine 131 and decreases AMP sensitivity of AMPK. In VSMCs, exogenous expression of S-nitrosylation-resistant AMPKγ1 or deficient NO synthase (iNOS) prevents the disruption of VSMC reprogramming. Finally, hyperhomocysteinemia or hyperglycemia increases AMPKγ1 S-nitrosylation, prevents vascular contractile phenotypic restoration, reduces CCBF, and increases the infarct size of the heart in Apoe-/- mice, all of which is rescued in Apoe-/-/iNOSsm-/- mice or Apoe-/- mice with enforced expression of the AMPKγ1-C130A mutant following RI/MI. We conclude that nitrosative stress disrupts coronary collateral circulation during hyperhomocysteinemia or hyperglycemia through AMPK S-nitrosylation.


Assuntos
Hiperglicemia , Hiper-Homocisteinemia , Ratos , Camundongos , Humanos , Animais , Circulação Colateral , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Liso Vascular , Hiper-Homocisteinemia/metabolismo , Apolipoproteínas E/metabolismo , Hiperglicemia/metabolismo
4.
Gene ; 898: 148036, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38036076

RESUMO

Abdominal aortic aneurysm (AAA) is a fatal cardiovascular disorder with high mortality and morbidity rates. To date, no drug has shown to significantly alleviate the risk of AAA. Previous studies have indicated that hyperhomocysteinemia (HHcy) significantly increases the incidence of AAA by disrupting endothelial cell homeostasis; however, the potential molecular mechanisms require clarification. Herein, we aimed to integrate transcriptomics analysis and molecular biology experiments to explore the potential molecular targets by which HHcy may increase the incidence of AAA. We integrated two AAA data profiles (GSE57691 and GSE7084) based on previously published microarray ribonucleic acid sequencing (RNAseq) data from the GEO database. Additionally, 500 µM homocysteine-treated human aorta endothelium cells microarray dataset (GSE175748) was downloaded and processed. Subsequently, single-cell RNA-seq profiles of the aortic aneurysms (GSE155468) were downloaded, scaled, and processed for further analysis. The microarray profiles analysis demonstrated that the Ras association domain family member 2 (RASSF2) and interleukin (IL)-1ß are potentially the target genes involved in the HHcy-mediated aggravation of AAA formation. Single-cell RNAseq analysis revealed that RASSF2 might impair endothelial cell function by increasing inflammatory cell infiltration to participate in AAA formation. Finally, we conducted reverse transcription quantitative polymerase chain reaction and immunofluorescence analysis to validate the up-regulated mRNA expression of RASSF2 (p = 0.008) and IL-1ß (p = 0.002) in AAA tissue compared to control tissue. Immunofluorescence staining revealed overexpression of RASSF2 protein in AAA tissue sections compared to control tissue (p = 0.037). Co-localization of RASSF2 and the aortic endothelium cell marker, CD31, was observed in tissue sections, indicating the potential involvement of RASSF2 in aortic endothelial cells. To summarise, our preliminary study revealed that HHcy may worsen AAA formation by up-regulating the expression of RASSF2 and IL-1ß in aortic endothelium cells.


Assuntos
Aneurisma da Aorta Abdominal , Hiper-Homocisteinemia , Humanos , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Células Endoteliais/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Perfilação da Expressão Gênica , Endotélio Vascular/metabolismo , Proteínas Supressoras de Tumor/genética
5.
Acta Neurol Belg ; 124(1): 213-222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37728847

RESUMO

BACKGROUND: Homocysteine (Hcy) is an endogenous nonprotein sulfur-containing amino acid biosynthesized from methionine by the removal of its terminal methyl group. Hyperhomocysteinemia (HHcy) has been linked to many systemic disorders, including stroke, proteinuria, epilepsy, psychosis, diabetes, lung disease, and liver disease. The clinical effects of high serum Hcy level, also known as hyperhomocysteinemia, have been explained by different mechanisms. However, little has been reported on the clinical and laboratory findings and etiologies of genetic HHcy in children. This study aimed to examine the relationships between clinical features, laboratory findings, and genetic defects of HHcy. METHODS: We retrospectively evaluated 20 consecutive children and adolescents with inherited HHcy at the pediatric neurology division of Baskent University, Adana Hospital (Adana, Turkey) between December 2011 and December 2022. RESULTS: Our main finding is that the most common cause of genetic HHcy is MTHFR mutation. The other main finding is that the Hcy level was higher in patients with CBS deficiency and intracellular cbl defects than in MTHFR mutations. We also found that clinical presentations of genetic HHcy vary widely, and the most common clinical finding is seizures. Here, we report the first and only case of a cbl defect with nonepileptic myoclonus. We also observed that mild and intermediate HHcy associated with the MTHFR mutation may be related to migraine, vertigo, tension-type headache, and idiopathic intracranial hypertension. Although some of the patients were followed up in tertiary care centers for a long time, they were not diagnosed with HHcy. Therefore, we suggest evaluating Hcy levels in children with unexplained neurological symptoms. CONCLUSIONS: Our findings suggest that genetic HHcy might be associated with different clinical manifestations and etiologies. Therefore, we suggest evaluating Hcy levels in children with unexplained neurologic symptoms.


Assuntos
Hiper-Homocisteinemia , Acidente Vascular Cerebral , Criança , Humanos , Adolescente , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Estudos Retrospectivos , Aminoácidos
6.
Pharmacol Res ; 198: 107009, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995896

RESUMO

Although hyperhomocysteinemia (hHcys) has been recognized as an important independent risk factor in the progression of end-stage renal disease and the development of cardiovascular complications related to end-stage renal disease, the mechanisms triggering pathogenic actions of hHcys are not fully understood. The present study was mainly designed to investigate the role of HDACs in renal injury induced by hHcys. Firstly, we identified the expression patterns of HDACs and found that, among zinc-dependent HDACs, HDAC9 was preferentially upregulated in the kidney from mice with hHcys. Deficiency or pharmacological inhibition of HDAC9 ameliorated renal injury in mice with hHcys. Moreover, podocyte-specific deletion of HDAC9 significantly attenuated podocyte injury and proteinuria. In vitro, gene silencing of HDAC9 attenuated podocyte injury by inhibiting apoptosis, reducing oxidative stress and maintaining the expressions of podocyte slit diaphragm proteins. Mechanically, we proved for the first time that HDAC9 reduced the acetylation level of H3K9 in the promoter of Klotho, then inhibited gene transcription of Klotho, finally aggravating podocyte injury in hHcys. In conclusion, our results indicated that targeting of HDAC9 might be an attractive therapeutic strategy for the treatment of renal injury induced by hHcys.


Assuntos
Hiper-Homocisteinemia , Falência Renal Crônica , Podócitos , Animais , Camundongos , Repressão Epigenética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/metabolismo , Falência Renal Crônica/complicações , Falência Renal Crônica/genética , Falência Renal Crônica/metabolismo , Podócitos/patologia
7.
Alzheimers Res Ther ; 15(1): 164, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789414

RESUMO

BACKGROUND: Hyperhomocysteinemia (HHcy) has been linked to development of Alzheimer's disease (AD) neuropathologically characterized by the accumulation of amyloid ß (Aß). Microglia (MG) play a crucial role in uptake of Aß fibrils, and its dysfunction worsens AD. However, the effect of HHcy on MG Aß phagocytosis remains unstudied. METHODS: We isolated MG from the cerebrum of HHcy mice with genetic cystathionine-ß-synthase deficiency (Cbs-/-) and performed bulk RNA-seq. We performed meta-analysis over transcriptomes of Cbs-/- mouse MG, human and mouse AD MG, MG Aß phagocytosis model, human AD methylome, and GWAS AD genes. RESULTS: HHcy and hypomethylation conditions were identified in Cbs-/- mice. Through Cbs-/- MG transcriptome analysis, 353 MG DEGs were identified. Phagosome formation and integrin signaling pathways were found suppressed in Cbs-/- MG. By analyzing MG transcriptomes from 4 AD patient and 7 mouse AD datasets, 409 human and 777 mouse AD MG DEGs were identified, of which 37 were found common in both species. Through further combinatory analysis with transcriptome from MG Aß phagocytosis model, we identified 130 functional-validated Aß phagocytic AD MG DEGs (20 in human AD, 110 in mouse AD), which reflected a compensatory activation of Aß phagocytosis. Interestingly, we identified 14 human Aß phagocytic AD MG DEGs which represented impaired MG Aß phagocytosis in human AD. Finally, through a cascade of meta-analysis of transcriptome of AD MG, functional phagocytosis, HHcy MG, and human AD brain methylome dataset, we identified 5 HHcy-suppressed phagocytic AD MG DEGs (Flt1, Calponin 3, Igf1, Cacna2d4, and Celsr) which were reported to regulate MG/MΦ migration and Aß phagocytosis. CONCLUSIONS: We established molecular signatures for a compensatory response of Aß phagocytosis activation in human and mouse AD MG and impaired Aß phagocytosis in human AD MG. Our discoveries suggested that hypomethylation may modulate HHcy-suppressed MG Aß phagocytosis in AD.


Assuntos
Doença de Alzheimer , Hiper-Homocisteinemia , Camundongos , Animais , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Metilação , Fagocitose , Modelos Animais de Doenças , Camundongos Transgênicos
8.
Cardiovasc Diabetol ; 22(1): 219, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620823

RESUMO

BACKGROUND: Clinical observations suggest a complex relationship between obesity and coronary artery disease (CAD). This study aimed to characterize the intermediate metabolism phenotypes among obese patients with CAD and without CAD. METHODS: Sixty-two participants who consecutively underwent coronary angiography were enrolled in the discovery cohort. Transcriptional and untargeted metabolomics analyses were carried out to screen for key molecular changes between obese patients with CAD (CAD obese), without CAD (Non-CAD obese), and Non-CAD leans. A targeted GC-MS metabolomics approach was used to further identify differentially expressed metabolites in the validation cohorts. Regression and receiver operator curve analysis were performed to validate the risk model. RESULTS: We found common aberrantly expressed pathways both at the transcriptional and metabolomics levels. These pathways included cysteine and methionine metabolism and arginine and proline metabolism. Untargeted metabolomics revealed that S-adenosylhomocysteine (SAH), 3-hydroxybenzoic acid, 2-hydroxyhippuric acid, nicotinuric acid, and 2-arachidonoyl glycerol were significantly elevated in the CAD obese group compared to the other two groups. In the validation study, targeted cysteine and methionine metabolomics analyses showed that homocysteine (Hcy), SAH, and choline were significantly increased in the CAD obese group compared with the Non-CAD obese group, while betaine, 5-methylpropanedioic acid, S-adenosylmethionine, 4-PA, and vitamin B2 (VB2) showed no significant differences. Multivariate analyses showed that Hcy was an independent predictor of obesity with CAD (hazard ratio 1.7; 95%CI 1.2-2.6). The area under the curve based on the Hcy metabolomic (HCY-Mtb) index was 0.819, and up to 0.877 for the HCY-Mtb.index plus clinical variables. CONCLUSION: This is the first study to propose that obesity with hyperhomocysteinemia is a useful intermediate metabolism phenotype that could be used to identify obese patients at high risk for developing CAD.


Assuntos
Doença da Artéria Coronariana , Hiper-Homocisteinemia , Obesidade , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Estudos Transversais , Cisteína , População do Leste Asiático , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Metabolômica , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Estudos Prospectivos , Fatores de Risco , Transcriptoma , Angiografia Coronária , Fatores de Risco Cardiometabólico , Adulto , Pessoa de Meia-Idade , Idoso
9.
Cell Biol Toxicol ; 39(6): 3077-3100, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37495868

RESUMO

Hyperhomocysteinemia (HHcy) plays a salient role in male infertility. However, whether HHcy interferes with testosterone production remains inconclusive. Here, we reported a lower serum testosterone level in HHcy mice. Single-cell RNA sequencing revealed that genes related to testosterone biosynthesis, together with nuclear receptor subfamily 5 group A member 1 (Nr5a1), a key transcription factor for steroidogenic genes, were downregulated in the Leydig cells (LCs) of HHcy mice. Mechanistically, Hcy lowered trimethylation of histone H3 on lysine 4 (H3K4me3), which was bound on the promoter region of Nr5a1, resulting in downregulation of Nr5a1. Intriguingly, we identified an unknown cell cluster annotated as Macrophage-like Leydig cells (McLCs), expressing both LCs and macrophages markers. In HHcy mice, McLCs were shifted toward pro-inflammatory phenotype and thus promoted inflammatory response in LC. Betaine supplementation rescued the downregulation of NR5A1 and restored the serum testosterone level in HHcy mice. Overall, our study highlights an etiological role of HHcy in LCs dysfunction.


Assuntos
Hiper-Homocisteinemia , Células Intersticiais do Testículo , Camundongos , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Testosterona , Hiper-Homocisteinemia/metabolismo , Macrófagos/metabolismo , Fatores de Transcrição/genética
10.
Int Immunopharmacol ; 118: 110085, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37018978

RESUMO

Hyperhomocysteinemia (HHcy) is associated with nonalcoholic fatty liver disease (NAFLD) and insulin resistance (IR). However, the underlying mechanism is still unknown. Recent studies have demonstrated that NLRP3 inflammasome activation plays a vital role in NAFLD and IR. Our study aimed to explore whether NLRP3 inflammasome contributed to HHcy-induced NAFLD and IR as well as dissected the underlying mechanism. C57BL/6 mice were fed a high-methionine diet (HMD) for 8 weeks to establish the HHcy mouse model. Compared with a chow diet, HMD induced hepatic steatosis (HS) and IR as well as activation of hepatic NLRP3 inflammasome. Moreover, HHcy-induced NAFLD and IR characterization disclosed that NLRP3 inflammasome activation occurred in liver tissue of HMD-fed mice, but was very marginal in either NLRP3-/- or Caspase-1-/- mice. Mechanistically, high levels of homocysteine (Hcy) up-regulated the expression of mouse double minute 2 homolog (MDM2), which directly ubiquitinates heat shock transcription factor 1 (HSF1) and consequently activated hepatic NLRP3 inflammasome in vivo and in vitro. In addition, in vitro experiments showed P300-mediated HSF1 acetylation at K298 hindered MDM2-mediated ubiquitination of HSF1 at K372, which plays important role in determining the HSF1 level. Importantly, either inhibition of MDM2 by JNJ-165 or activation of HSF1 by HSF1A reversed HMD-induced hepatic NLRP3 inflammasome, and consequently alleviated HS and IR in mice. This study demonstrates that NLRP3 inflammasome activation contributes to HHcy-induced NAFLD and IR, and further identified that HSF1 as a new substrate of MDM2 and its decrease on MDM2-mediated ubiquitination at K372 modulates NLRP3 inflammasome activation. These findings may provide novel therapeutic strategies aimed at halting HS or IR.


Assuntos
Hiper-Homocisteinemia , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Inflamassomos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Metionina/metabolismo , Ubiquitinação
11.
Biochemistry (Mosc) ; 88(2): 262-279, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37072327

RESUMO

Numerous studies have shown that various adverse factors of different nature and action mechanisms have similar negative influence on placental angiogenesis, resulting in insufficiency of placental blood supply. One of the risk factors for pregnancy complications with placental etiology is an increased level of homocysteine in the blood of pregnant women. However, the effect of hyperhomocysteinemia (HHcy) on the development of the placenta and, in particular, on the formation of its vascular network is at present poorly understood. The aim of this work was to study the effect of maternal HHcy on the expression of angiogenic and growth factors (VEGF-A, MMP-2, VEGF-B, BDNF, NGF), as well as their receptors (VEGFR-2, TrkB, p75NTR), in the rat placenta. The effects of HHcy were studied in the morphologically and functionally different maternal and fetal parts of the placenta on the 14th and 20th day of pregnancy. The maternal HHcy caused increase in the levels of oxidative stress and apoptosis markers accompanied by an imbalance of the studied angiogenic and growth factors in the maternal and/or fetal part of the placenta. The influence of maternal HHcy in most cases manifested in a decrease in the protein content (VEGF-A), enzymatic activity (MMP-2), gene expression (VEGFB, NGF, TRKB), and accumulation of precursor form (proBDNF) of the investigated factors. In some cases, the effects of HHcy differed depending on the placental part and stage of development. The influence of maternal HHcy on signaling pathways and processes controlled by the studied angiogenic and growth factors could lead to incomplete development of the placental vasculature and decrease in the placental transport, resulting in fetal growth restriction and impaired fetal brain development.


Assuntos
Hiper-Homocisteinemia , Placenta , Gravidez , Feminino , Ratos , Humanos , Animais , Placenta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hiper-Homocisteinemia/metabolismo , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia
12.
Biochemistry (Mosc) ; 88(4): 435-456, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37080931

RESUMO

According to modern view, susceptibility to diseases, specifically to cognitive and neuropsychiatric disorders, can form during embryonic development. Adverse factors affecting mother during the pregnancy increase the risk of developing pathologies. Despite the association between elevated maternal blood homocysteine (Hcy) and fetal brain impairments, as well as cognitive deficits in the offspring, the role of brain plasticity in the development of these pathologies remains poorly studied. Here, we review the data on the negative impact of hyperhomocysteinemia (HHcy) on the neural plasticity, in particular, its possible influence on the offspring brain plasticity through epigenetic mechanisms, such as changes in intracellular methylation potential, activity of DNA methyltransferases, DNA methylation, histone modifications, and microRNA expression in brain cells. Since placenta plays a key role in the transport of nutrients and transmission of signals from mother to fetus, its dysfunction due to aberrant epigenetic regulation can affect the development of fetal CNS. The review also presents the data on the impact of maternal HHcy on the epigenetic regulation in the placenta. The data presented in the review are not only interesting from purely scientific point of view, but can help in understanding the role of HHcy and epigenetic mechanisms in the pathogenesis of diseases, such as pregnancy pathologies resulting in the delayed development of fetal brain, cognitive impairments in the offspring during childhood, and neuropsychiatric and neurodegenerative disorders later in life, as well as in the search for approaches for their prevention using neuroprotectors.


Assuntos
Epigênese Genética , Hiper-Homocisteinemia , Gravidez , Feminino , Humanos , Hiper-Homocisteinemia/metabolismo , Placenta/metabolismo , Metilação de DNA , Sistema Nervoso/metabolismo
13.
Signal Transduct Target Ther ; 8(1): 103, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907919

RESUMO

Hyperhomocysteinemia (HHcy) is a risk factor for chronic kidney diseases (CKDs) that affects about 85% CKD patients. HHcy stimulates B cells to secrete pathological antibodies, although it is unknown whether this pathway mediates kidney injury. In HHcy-treated 2-kidney, 1-clip (2K1C) hypertensive murine model, HHcy-activated B cells secreted anti-beta 2 glycoprotein I (ß2GPI) antibodies that deposited in glomerular endothelial cells (GECs), exacerbating glomerulosclerosis and reducing renal function. Mechanistically, HHcy 2K1C mice increased phosphatidylethanolamine (PE) (18:0/20:4, 18:0/22:6, 16:0/20:4) in kidney tissue, as determined by lipidomics. GECs oxidative lipidomics validated the increase of oxidized phospholipids upon Hcy-activated B cells culture medium (Hcy-B CM) treatment, including PE (18:0/20:4 + 3[O], PE (18:0a/22:4 + 1[O], PE (18:0/22:4 + 2[O] and PE (18:0/22:4 + 3[O]). PE synthases ethanolamine kinase 2 (etnk2) and ethanolamine-phosphate cytidylyltransferase 2 (pcyt2) were increased in the kidney GECs of HHcy 2K1C mice and facilitated polyunsaturated PE synthesis to act as lipid peroxidation substrates. In HHcy 2K1C mice and Hcy-B CM-treated GECs, the oxidative environment induced by iron accumulation and the insufficient clearance of lipid peroxides caused by transferrin receptor (TFR) elevation and down-regulation of SLC7A11/glutathione peroxidase 4 (GPX4) contributed to GECs ferroptosis of the kidneys. In vivo, pharmacological depletion of B cells or inhibition of ferroptosis mitigated the HHcy-aggravated hypertensive renal injury. Consequently, our findings uncovered a novel mechanism by which B cell-derived pathogenic anti-ß2GPI IgG generated by HHcy exacerbated hypertensive kidney damage by inducing GECs ferroptosis. Targeting B cells or ferroptosis may be viable therapeutic strategies for ameliorating lipid peroxidative renal injury in HHcy patients with hypertensive nephropathy.


Assuntos
Ferroptose , Hiper-Homocisteinemia , Nefropatias , Camundongos , Animais , Hiper-Homocisteinemia/tratamento farmacológico , Hiper-Homocisteinemia/metabolismo , Células Endoteliais/metabolismo , Nefropatias/metabolismo , Glicoproteínas
14.
J Neurosci ; 43(10): 1797-1813, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36746627

RESUMO

Despite the indispensable role that astrocytes play in the neurovascular unit, few studies have investigated the functional impact of astrocyte signaling in cognitive decline and dementia related to vascular pathology. Diet-mediated induction of hyperhomocysteinemia (HHcy) recapitulates numerous features of vascular contributions to cognitive impairment and dementia (VCID). Here, we used astrocyte targeting approaches to evaluate astrocyte Ca2+ dysregulation and the impact of aberrant astrocyte signaling on cerebrovascular dysfunction and synapse impairment in male and female HHcy diet mice. Two-photon imaging conducted in fully awake mice revealed activity-dependent Ca2+ dysregulation in barrel cortex astrocytes under HHcy. Stimulation of contralateral whiskers elicited larger Ca2+ transients in individual astrocytes of HHcy diet mice compared with control diet mice. However, evoked Ca2+ signaling across astrocyte networks was impaired in HHcy mice. HHcy also was associated with increased activation of the Ca2+/calcineurin-dependent transcription factor NFAT4, which has been linked previously to the reactive astrocyte phenotype and synapse dysfunction in amyloid and brain injury models. Targeting the NFAT inhibitor VIVIT to astrocytes, using adeno-associated virus vectors, led to reduced GFAP promoter activity in HHcy diet mice and improved functional hyperemia in arterioles and capillaries. VIVIT expression in astrocytes also preserved CA1 synaptic function and improved spontaneous alternation performance on the Y maze. Together, the results demonstrate that aberrant astrocyte signaling can impair the major functional properties of the neurovascular unit (i.e., cerebral vessel regulation and synaptic regulation) and may therefore represent a promising drug target for treating VCID and possibly Alzheimer's disease and other related dementias.SIGNIFICANCE STATEMENT The impact of reactive astrocytes in Alzheimer's disease and related dementias is poorly understood. Here, we evaluated Ca2+ responses and signaling in barrel cortex astrocytes of mice fed with a B-vitamin deficient diet that induces hyperhomocysteinemia (HHcy), cerebral vessel disease, and cognitive decline. Multiphoton imaging in awake mice with HHcy revealed augmented Ca2+ responses in individual astrocytes, but impaired signaling across astrocyte networks. Stimulation-evoked arteriole dilation and elevated red blood cell velocity in capillaries were also impaired in cortex of awake HHcy mice. Astrocyte-specific inhibition of the Ca2+-dependent transcription factor, NFAT, normalized cerebrovascular function in HHcy mice, improved synaptic properties in brain slices, and stabilized cognition. Results suggest that astrocytes are a mechanism and possible therapeutic target for vascular-related dementia.


Assuntos
Doença de Alzheimer , Hiper-Homocisteinemia , Camundongos , Masculino , Feminino , Animais , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/patologia , Dieta , Fatores de Transcrição/metabolismo
15.
Cells ; 12(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611982

RESUMO

Maternal hyperhomocysteinemia causes the disruption of placental blood flow and can lead to serious disturbances in the formation of the offspring's brain. In the present study, the effects of prenatal hyperhomocysteinemia (PHHC) on the neuronal migration, neural tissue maturation, and the expression of signaling molecules in the rat fetal brain were described. Maternal hyperhomocysteinemia was induced in female rats by per os administration of 0.15% aqueous methionine solution in the period of days 4-21 of pregnancy. Behavioral tests revealed a delay in PHHC male pups maturing. Ultrastructure of both cortical and hippocampus tissue demonstrated the features of the developmental delay. PHHC was shown to disturb both generation and radial migration of neuroblasts into the cortical plate. Elevated Bdnf expression, together with changes in proBDNF/mBDNF balance, might affect neuronal cell viability, positioning, and maturation in PHHC pups. Reduced Kdr gene expression and the content of SEMA3E might lead to impaired brain development. In the brain tissue of E20 PHHC fetuses, the content of the procaspase-8 was decreased, and the activity level of the caspase-3 was increased; this may indicate the development of apoptosis. PHHC disturbs the mechanisms of early brain development leading to a delay in brain tissue maturation and formation of the motor reaction of pups.


Assuntos
Hiper-Homocisteinemia , Ratos , Animais , Feminino , Gravidez , Masculino , Ratos Wistar , Hiper-Homocisteinemia/metabolismo , Placenta/metabolismo , Encéfalo/metabolismo , Neurogênese
16.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674587

RESUMO

Age-related macular degeneration (AMD) is a major cause of blindness. Recent studies have reported impaired glycolysis in AMD patients with a high lactate/pyruvate ratio. Elevated homocysteine (Hcy) (Hyperhomocysteinemia, HHcy) was observed in several clinical studies, reporting an association between HHcy and AMD. We established the effect of HHcy on barrier function, retinal pigment epithelium (RPE) structure, and induced choroidal neovascularization (CNV) in mice. We hypothesize that HHcy contributes to AMD by inducing a metabolic switch in the mitochondria, in which cells predominantly produce energy by the high rate of glycolysis, or "Warburg", effect. Increased glycolysis results in an increased production of lactate, cellular acidity, activation of angiogenesis, RPE barrier dysfunction, and CNV. Evaluation of cellular energy production under HHcy was assessed by seahorse analysis, immunofluorescence, and western blot experiments. The seahorse analysis evaluated the extracellular acidification rate (ECAR) as indicative of glycolysis. HHcy showed a significant increase in ECAR both in vivo using (Cystathionine ß-synthase) cbs+/- and cbs-/- mice retinas and in vitro (Hcy-treated ARPE-19) compared to wild-type mice and RPE cells. Moreover, HHcy up-regulated glycolytic enzyme (Glucose transporter-1 (GlUT-1), lactate dehydrogenase (LDH), and hexokinase 1 (HK1)) in Hcy-treated ARPE-19 and primary RPE cells isolated from cbs+/+, cbs+/-, and cbs-/- mice retinas. Inhibition of GLUT-1 or blocking of N-methyl-D-aspartate receptors (NMDAR) reduced glycolysis in Hcy-treated RPE and improved albumin leakage and CNV induction in Hcy-injected mice eyes. The current study suggests that HHcy causes a metabolic switch in the RPE cells from mitochondrial respiration to glycolysis during AMD and confirms the involvement of NMDAR in this process. Therefore, targeting Glycolysis or NMDAR could be a novel therapeutic target for AMD.


Assuntos
Neovascularização de Coroide , Hiper-Homocisteinemia , Degeneração Macular , Camundongos , Animais , Células Cultivadas , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Hiper-Homocisteinemia/metabolismo , Neovascularização de Coroide/metabolismo , Cistationina beta-Sintase/metabolismo , Homocisteína/metabolismo
17.
Redox Biol ; 58: 102540, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36399957

RESUMO

BACKGROUND: s: Hyperhomocysteinemia (HHcy) is one of risk factors for vascular cognitive impairment (VCI). GTP cyclohydrolase 1 (GCH1) deficiency is critical to oxidative stress in vascular dysfunction. The aim of this study was designed to examine whether HHcy induces VCI through GCH1 S-nitrosylation, a redox-related post-translational modification of cysteine. METHODS: The VCI model was induced by feeding mice homocysteine thiolactone (HTL) for 16 consecutive weeks. The cognitive functions were evaluated by step-down avoidance test, passive avoidance step-through task test, and Morris water maze (MWM) test. Protein S-nitrosylation was assayed using a biotin-switch method. RESULTS: In cell-free system, nitric oxide (NO) donor induced GCH1 protein S-nitrosylation and decreased GCH1 activity. In endothelial cells, HTL increased GCH1 S-nitrosylation, reduced tetrahydrobiopterin, and induced oxidative stress, which were attenuated by N-acetyl-cysteine, L-N6-1-Iminoethyl-lysine, mutant of GCH1 cysteine 141 to alanine (MT-GCH1) or gene deletion of inducible NO synthase (iNOS). Further, HTL incubation or iNOS overexpression promoted endothelial cellular senescence, but abolished by exogenous expression of MT-GCH1 or pharmacological approaches including N-acetyl-cysteine, L-sepiapterin, and tempol. In wildtype mice, long-term administration of HTL induced GCH1 S-nitrosylation and vascular stiffness, decreased cerebral blood flow, and damaged the cognitive functions. However, these abnormalities induced by HTL administration were rescued by enforced expression of MT-GCH1 or gene knockout of iNOS. In human subjects, GCH1 S-nitrosylation was increased and cognitive functions were impaired in patients with HHcy. CONCLUSION: The iNOS-mediated nitrosative stress induced by HTL drives GCH1 S-nitrosylation to induce cerebral vascular stiffness and cognitive impairments.


Assuntos
Disfunção Cognitiva , Hiper-Homocisteinemia , Animais , Humanos , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Cisteína/metabolismo , Células Endoteliais/metabolismo , GTP Cicloidrolase , Hiper-Homocisteinemia/induzido quimicamente , Hiper-Homocisteinemia/metabolismo , Óxido Nítrico/metabolismo , Estresse Nitrosativo
18.
Physiol Rep ; 10(18): e15467, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36117391

RESUMO

Hyperhomocysteinemia may arise from folate/vitamin B12 deficiency, genetic polymorphisms, kidney disease, or hypothyroidism. It is associated with an increased risk of early pregnancy loss and placenta-related complications of pregnancy, including pre-eclampsia and fetal growth restriction. While the majority of studies of hyperhomocysteinemia focus on epigenetic changes secondary to metabolic disruption, the effects of homocysteine toxicity on placental development remain unexplored. Here, we investigated the influence of hyperhomocysteinemia on early blastocyst development and trophoblast differentiation. Exposure of cultured blastocysts to high homocysteine levels reduces cell number in the trophectoderm layer, most likely through increased apoptosis. Homocysteine also promotes differentiation of a trophoblast stem cell line. Both effects diminish the stem cell pool, and are mediated in an endoplasmic reticulum (ER) unfolded protein response (UPRER )-dependent manner. Targeted alleviation of UPRER may therefore provide a new therapeutic intervention to improve pregnancy outcome in women with hyperhomocysteinemia.


Assuntos
Hiper-Homocisteinemia , Trofoblastos , Animais , Blastocisto/metabolismo , Feminino , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/metabolismo , Camundongos , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo , Resposta a Proteínas não Dobradas , Vitaminas/metabolismo
19.
Oxid Med Cell Longev ; 2022: 1486157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046692

RESUMO

Hyperhomocysteinemia (HHcy) is positively linked with several cardiovascular diseases; however, its role and underlying mechanisms in pathological cardiac hypertrophy are still unclear. Here, we focused on the effects and underlying mechanisms of HHcy in hypertensive cardiac hypertrophy, one of the most common and typical types of pathological cardiac hypertrophy. By a retrospective analysis of the association between HHcy and cardiac hypertrophy in a hypertensive cohort, we found that the prevalence of HHcy was higher in patients with hypertrophy and significantly associated with the presence of cardiac hypertrophy after adjusting for other conventional risk factors. In mice, HHcy induced by a methionine (2% wt/wt) diet feeding significantly promoted cardiac hypertrophy as well as cardiac inflammation and fibrosis induced by 3-week angiotensin ІІ (AngІІ) infusion (1000 ng/kg/min), while folic acid (0.006% wt/wt) supplement corrected HHcy and attenuated AngII-stimulated cardiac phenotypes. Mechanistic studies further showed that homocysteine (Hcy) exacerbated AngII-stimulated expression of Calcineurin and nuclear factor of activated T cells (NFAT), which could be attenuated by folic acid both in mice and in neonatal rat cardiomyocytes. Moreover, treatment with cyclosporin A, an inhibitor of Calcineurin, blocked Hcy-stimulated Calcineurin-NFAT signaling and hypertrophy in neonatal rat cardiomyocytes. In conclusion, our study indicates that HHcy promotes cardiac hypertrophy in hypertension, and Calcineurin-NFAT pathway might be involved in the pro-hypertrophic effect of Hcy.


Assuntos
Hiper-Homocisteinemia , Hipertensão , Animais , Calcineurina/metabolismo , Cardiomegalia/complicações , Cardiomegalia/metabolismo , Ácido Fólico/farmacologia , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/metabolismo , Hipertensão/complicações , Hipertensão/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Ratos , Estudos Retrospectivos
20.
Redox Biol ; 56: 102442, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998432

RESUMO

Hematoma clearance, which is achieved largely by phagocytosis of erythrocytes in the hemorrhagic brain, limits injury and facilitates recovery following intracerebral hemorrhage (ICH). Efficient phagocytosis critically depends on the capacity of a single phagocyte to phagocytize dead cells continually. However, the mechanism underlying continual phagocytosis following ICH remains unclear. We aimed to investigate the mechanism in this study. By using ICH models, we found that the gasotransmitter hydrogen sulfide (H2S) is an endogenous modulator of continual phagocytosis following ICH. The expression of the H2S synthase cystathionine ß-synthase (CBS) and CBS-derived H2S were elevated in brain-resident phagocytic microglia following ICH, which consequently promoted continual phagocytosis of erythrocytes by microglia. Microglia-specific deletion of CBS delayed spontaneous hematoma clearance via an H2S-mediated mechanism following ICH. Mechanistically, oxidation of CBS-derived endogenous H2S by sulfide-quinone oxidoreductase initiated reverse electron transfer at mitochondrial complex I, leading to superoxide production. Complex I-derived superoxide, in turn, activated uncoupling protein 2 (UCP2) to promote microglial phagocytosis of erythrocytes. Functionally, complex I and UCP2 were required for spontaneous hematoma clearance following ICH. Moreover, hyperhomocysteinemia, an established risk factor for stroke, impaired ICH-enhanced CBS expression and delayed hematoma resolution, while supplementing exogenous H2S accelerated hematoma clearance in mice with hyperhomocysteinemia. The results suggest that the microglial CBS-H2S-complex I axis is critical to continual phagocytosis following ICH and can be targeted to treat ICH.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Hiper-Homocisteinemia , Animais , Hemorragia Cerebral/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Eritrócitos/metabolismo , Gasotransmissores/metabolismo , Hematoma/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/metabolismo , Camundongos , Microglia/metabolismo , Mitocôndrias/metabolismo , Fagocitose , Superóxidos/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...